Index
-------------------------------------------------------------------------------------------------------------------------------------------
001 - 017 orthogonal grid
100mm square grid
50mm
25 mm
10mm
5 mm
2.5mm
1 mm
1 pt
1 agate
1 pica
1 cicero
114 inch
1/2 inch
1 inch
2 inch
4 inch
018 - 024 orthogonal grid union
100 mm + 4 inch
50 mm + 2 inch
25 mm + 1 inch
10 mm + V, inch
5 mm + 1/4 inch
2.5 mm + 1 pica
1 agate + 1 pica + 1 cicero
1 mm + 1 pt
025 - 036 logarithmic grid
2 cycle semi-log
3 cycle semi-log
4 cycle semi-log
5 cycle semi-log
6 cycle semi-log
7 cycle semi-log
2 cycle log-log
3 cycle log-log
4 cycle log-log
5 cycle log-log
6 cycle log-log
7 cycle log-log
-----------------------------------------------------------------------------------------------------------------------------------------------
001 - 003 regular tiling
{3,6} isometric grid
{4,4} square grid
{6,3} hexagonal grid
004 - 021 triangulation
{4,4},
{4,4}, tetrakis square tiling
{6,3},
{6,3}" triakis triangular tiling
{6,3}"
{6,3}" bisected hexagonal tiling
-------------------------------------------------------------------------------------------------------------------------------------------
001 - 008 semiregular tiling
{3·6·3·6)
{3·3·3·3·6)
{3·3·3·H}
{3·3·4·3·4)
{3-4-6·4}
{4·8·8}
{3·12·12)
{4·6·12}
009 - 024 semiregular dual
{3·6·3·6} + quasiregular rhombic tiling union
quasiregular rhombic tiling 3-fold symmetry, 6-fold symmetry
{3·3·3·3·6} + floret pentagonal tiling union
floret pentagonal tiling 6-fold irregular pentagon tiling
{3·3·3·4-4} + prismatic pentagona ltiling union
prismatic pentagonal tiling 3-fold irregular pentagon tiling
{3·3-4·3·4) + cairo pentagonal tiling union
cairo pentagonal tiling 4-fold irregular pentagon tiling
{3·4·6·4) + deltoidal trihexagonal tiling union
deltoidal trihexagonal tiling {3, 6}, {6, 3} triangulation
{4·8·8) + tetrakis square tiling union
tetrakis square tiling {4, 4} triangulation
{3·1 2·1 2} + triakis triangular tiling union
triakis triangular tiling {3, 6}, quasiregular rhombic tiling
{4·6·12) + bisected hexagonal tiling union
bisected hexagonal tiling {3, 6}, {6, 3} triangulation
-----------------------------------------------------------------------------------------------------------------------------------------------
001 - 026 tiling variation
{3, 6j scalene tnangles *
{3, 6} equilateral and isoseeles triangles *
{3, 6} scalene and isoseeles triangles *
{3, 6} equilateral, Isoseeles and scalene triangles *
{3·3·3·4·4} 4.147mm length increment squares
{3·3·3·4·4} 150% length increment squares
{3·3·3-4·4} x' length increment squares
{3·3·3·4·4)rectangles and isoseeles triangles *
{3·3·4·3·4}isoseeles triangles *
{4, 4} rectangles and trapezoids *
{4, 4} rectangles and right triangles *
{6, 3} irregular hexagons *
{3·4·6-4} rectangles *
{4·6·12} rectangles and irregular hexagons *
3 square grids 0° offsel, 46° offset, 80° offset
3 square grids 0° offset, 63° offset, 77° offset
{3·3·3·4·4} + {3·3·3·4·4) 4.147mm length increment union
{3·3·3·4·4} + {3·3·3·4-4} 1500/0 length increment union
non-regular octogon {4·8·8} + non-regular octogon {4·8·8} union
50% width decrement
regular actagon {4·8·8} + regular octogon {4·8·8} 50% union
width decrement
{3·12·12} + {3·12·12) 50% length decrement union
non-regular dodecagon {4·6·12} + non-regular dodecagon union
{4·6·12} 50% length decrement
isometrie grid to square grid {3, 6} vertex
isometrie grid to square grid {3, 6} progressive skewing
hexagon grid 10 non-regular hexagon grid {6, 3} vertex displacement
hexagon grid to non-regular hexagon grid {6, 3} progressive skewing
2 isometrie grids to square grids union
2 hexagon grids to non-regular hexagon grids union
-----------------------------------------------------------------------------------------------------------------------------------------------
001 -124 demiregular tiling k == n transitivy classes
001 - 020 k = 2 uniform tilings
021 - 059 k = 3 uniform lilings
060 - 092 k = 4 uniform lilings
093 - 107 k = 5 uniform tilings
108-117 k = 6 uniform tilings
118-124 k = 7 uniform tilings
----------------------------------------------------------------------------------------------------------------------------------------------
001 - 004 pentagonal tiling
dihedral pentagonal tiling pentiling
durer pentagonal tiling pentiling
kepler pentagonalliling pentiling
kepler-penrose pentagonal tiling pentiling
-----------------------------------------------------------------------------------------------------------------------------------------------
001 - 042 quasiperiodic tiling
3-fold symmetry, 6-fold symmetry quasiregular rhombic tiling
002 - 012 5-fold symmetry unions
013 - 024 7-fold symmetry unions
025 - 026 8-fold symmetry ammann-beenker tilings
027 - 036 9-fold symmetry unions
037 - 042 12-fold symmetry
socolar tiling
socolar tiling + socolar tiling inflation union
shield tiling
plate tiling
shield tiling + socolar tiIing union
plate tiling + socolar tiling union
-----------------------------------------------------------------------------------------------------------------------------------------------
001 -013 non-periodic tiling
penrose rhombus tiling
penrose kite and dart tiling
3 penrose kite and dart tilings 0° offset, 36° offset, 72° offset
004 - 013
10 - fold symmetry spiky decagon tiling ••