NeuralArchive

An archive of published things by Neural.it. You can browse, search, or see a random publication. The Neural Archive lists 1888 publications.

Grid Index

Author
Carsten Nicolai
Publisher / Label
Die Gestalten Verlag
Country
Germany
Language
English
Publication year
2009
Type of publication
Book
Number of pages
320
ISBN
9783899552416

Index

-------------------------------------------------------------------------------------------------------------------------------------------
001 - 017 orthogonal grid  

100mm      square grid
50mm
25 mm
10mm
5 mm
2.5mm
1 mm
1 pt
1 agate
1 pica
1 cicero
114 inch
1/2 inch
1 inch
2 inch
4 inch

018 - 024 orthogonal grid union 

100 mm + 4 inch
50 mm + 2 inch
25 mm + 1 inch
10 mm + V, inch
5 mm + 1/4 inch
2.5 mm + 1 pica
1 agate + 1 pica + 1 cicero
1 mm + 1 pt

025 - 036 logarithmic grid   
  
2 cycle semi-log
3 cycle semi-log
4 cycle semi-log
5 cycle semi-log
6 cycle semi-log
7 cycle semi-log
2 cycle log-log
3 cycle log-log
4 cycle log-log
5 cycle log-log
6 cycle log-log
7 cycle log-log

-----------------------------------------------------------------------------------------------------------------------------------------------
001 - 003  regular tiling 

{3,6}    isometric grid
{4,4}    square grid
{6,3}    hexagonal grid


004 - 021 triangulation  

{4,4},
{4,4},   tetrakis square tiling
{6,3},
{6,3}"   triakis triangular tiling
{6,3}"
{6,3}"   bisected hexagonal tiling

-------------------------------------------------------------------------------------------------------------------------------------------
001 - 008 semiregular tiling   

{3·6·3·6)
{3·3·3·3·6)
{3·3·3·H}
{3·3·4·3·4)
{3-4-6·4}
{4·8·8}
{3·12·12)
{4·6·12}

009 - 024 semiregular dual  

{3·6·3·6} + quasiregular rhombic tiling    union
quasiregular rhombic tiling                3-fold symmetry, 6-fold symmetry
{3·3·3·3·6} + floret pentagonal tiling     union
floret pentagonal tiling                   6-fold irregular pentagon tiling
{3·3·3·4-4} + prismatic pentagona ltiling  union
prismatic pentagonal tiling                3-fold irregular pentagon tiling
{3·3-4·3·4) + cairo pentagonal tiling      union
cairo pentagonal tiling                    4-fold irregular pentagon tiling
{3·4·6·4) + deltoidal trihexagonal tiling  union
deltoidal trihexagonal tiling              {3, 6}, {6, 3} triangulation
{4·8·8) + tetrakis square tiling           union
tetrakis square tiling                     {4, 4} triangulation
{3·1 2·1 2} + triakis triangular tiling    union
triakis triangular tiling                  {3, 6}, quasiregular rhombic tiling
{4·6·12) + bisected hexagonal tiling       union
bisected hexagonal tiling                  {3, 6}, {6, 3} triangulation

-----------------------------------------------------------------------------------------------------------------------------------------------
001 - 026 tiling variation 

{3, 6j scalene tnangles                                   *
{3, 6} equilateral and isoseeles triangles                *
{3, 6} scalene and isoseeles triangles                    *
{3, 6} equilateral, Isoseeles and scalene triangles       *
{3·3·3·4·4} 4.147mm length increment squares
{3·3·3·4·4} 150% length increment squares
{3·3·3-4·4} x' length increment squares
{3·3·3·4·4)rectangles and isoseeles triangles             *
{3·3·4·3·4}isoseeles triangles                            *
{4, 4} rectangles and trapezoids                          *
{4, 4} rectangles and right triangles                     *
{6, 3} irregular hexagons                                 *
{3·4·6-4} rectangles                                      *
{4·6·12} rectangles and irregular hexagons                *
3 square grids                                            0° offsel, 46° offset, 80° offset
3 square grids                                            0° offset, 63° offset, 77° offset
{3·3·3·4·4} + {3·3·3·4·4) 4.147mm length increment        union
{3·3·3·4·4} + {3·3·3·4-4} 1500/0 length increment         union
non-regular octogon {4·8·8} + non-regular octogon {4·8·8} union
50% width decrement
regular actagon {4·8·8} + regular octogon {4·8·8} 50%     union
width decrement
{3·12·12} + {3·12·12) 50% length decrement                union
non-regular dodecagon {4·6·12} + non-regular dodecagon    union
{4·6·12} 50% length decrement
isometrie grid to square grid                             {3, 6} vertex 
isometrie grid to square grid                             {3, 6} progressive skewing
hexagon grid 10 non-regular hexagon grid                  {6, 3} vertex displacement
hexagon grid to non-regular hexagon grid                  {6, 3} progressive skewing
2 isometrie grids to square grids                         union
2 hexagon grids to non-regular hexagon grids              union

-----------------------------------------------------------------------------------------------------------------------------------------------
001 -124 demiregular tiling                               k == n transitivy classes

001 - 020          k = 2 uniform tilings
021 - 059          k = 3 uniform lilings
060 - 092          k = 4 uniform lilings
093 - 107          k = 5 uniform tilings
108-117            k = 6 uniform tilings
118-124            k = 7 uniform tilings

----------------------------------------------------------------------------------------------------------------------------------------------
001 - 004 pentagonal tiling                    

dihedral pentagonal tiling                                pentiling
durer pentagonal tiling                                   pentiling
kepler pentagonalliling                                   pentiling
kepler-penrose pentagonal tiling                          pentiling
-----------------------------------------------------------------------------------------------------------------------------------------------
001 - 042 quasiperiodic tiling 
                  
3-fold symmetry, 6-fold symmetry                          quasiregular rhombic tiling

002 - 012        5-fold symmetry                          unions

013 - 024        7-fold symmetry                          unions

025 - 026        8-fold symmetry                          ammann-beenker tilings

027 - 036        9-fold symmetry                          unions

037 - 042        12-fold symmetry

socolar tiling
socolar tiling + socolar tiling inflation                 union
shield tiling
plate tiling
shield tiling + socolar tiIing                            union
plate tiling + socolar tiling                             union
-----------------------------------------------------------------------------------------------------------------------------------------------
001 -013 non-periodic tiling                                   

penrose rhombus tiling
penrose kite and dart tiling
3 penrose kite and dart tilings                           0° offset, 36° offset, 72° offset

004 - 013 

10 - fold symmetry                                        spiky decagon tiling ••